
EE4212 Computer Vision

Assignment 3: Non-parametric Texture Synthesis

Vo Nguyen Khang - U084040W

Abstract— Texture synthesis is a method to generate a large
texture from a smaller sample. In this assignment, two texture
synthesis algorithms (Efros & Leung algorithm [1] and its
extension [2]) are implemented and applied on the given texture
samples to generate larger texture images with similar visual
appearance to those samples.

I. BASIC SYNTHESIS ALGORITHM

The basic synthesis algorithm introduced by Efros &
Leung [1] is based on the Markov random field (MRF)
model. The texture synthesis process grows a new image
outward from an initial seed, one pixel at a time. The
conditional distribution of a pixel given all its neighbors
synthesized so far is estimated by querying the sample image
and finding all similar neighborhoods. The algorithm can be
summarized as follow:
Algorithm 1 Efros and Leung algorithm
function GrowImage(SampleImage,Image,WindowSize)

while Image not filled do
progress = 0
PixelList = GetUnfilledNeighbors(Image)
foreach Pixel in PixelList do
Template = GetNeighborhoodWindow(Pixel)
BestMatches = FindMatches(Template,SampleImage)
BestMatch = RandomPick(BestMatches)
if (BestMatch.error < MaxErrThreshold) then

Pixel.value = BestMatch.value
progress = 1

end
end
if progress == 0 then

MaxErrThreshold = MaxErrThreshold * 1.1
end

return Image
end

Function GetUnfilledNeighbors() returns a list of all
unfilled pixels that have filled pixels as their neighbors (the
image is subtracted from its morphological dilation). The list
is randomly permuted and then sorted by decreasing num-
ber of filled neighbor pixels. GetNeigborhoodWindow()
returns a window of size WindowSize around a given pixel.
RandomPick() picks an element randomly from the list.
FindMatches() is as follows:
Listing 1 FindMatch() function
function FindMatches(Template,SampleImage)
ValidMask = 1s where Template is filled, 0s otherwise
GaussMask = Gaussian2D(WindowSize,Sigma)
TotWeight = sum i,j GaussiMask(i,j)*ValidMask(i,j)
for i,j do

for ii,jj do
dist = (Template(ii,jj)-SampleImage(i-ii,j-jj))^2
SSD(i,j) = SSD(i,j) + dist*ValidMask(ii,jj)*GaussMask(ii,jj)

end
SSD(i,j) = SSD(i,j) / TotWeight

end
PixelList = all pixels (i,j) where SSD(i,j) <= min(SSD)*(1+ErrThreshold)
return PixelList

end

II. PATCH BASED SYNTHESIS

Image Quilting [2] is an extended version of the the
original Efros & Leung algorithm. From the observation
that per-pixel synthesis is very slow, and neighbor pixels are
highly correlated; they come up with the idea to make the
unit of synthesis as a block of pixels. The MRF property
is also applied on this extended version as in the original
algorithm, but the extended algorithm is much faster since
it synthesizes all pixels in a block at once. The complete
quilting algorithm is as follows:
Algorithm 2 Image Quilting

• Pick size of block and size of overlap.
• Synthesize blocks in raster order.
• Search input texture for the block that is most consistent to the

synthesized result at overlap regions.
• Compute the error surface between the newly chosen block and

the old blocks at the overlap region. Find the minimum cost path
along this surface and make that the boundary of the new block.
Paste the block onto the texture. Repeat.

The process of finding the minimum error boundary cut
between two overlapping blocks on the pixels can easily be
done with dynamic programming, as showed in Listing 2.
To speed up the block searching process, the approximate
nearest neighbor search algorithm can be used.
Listing 2 Finding Min-cut using dynamic programming

1) Calculate the difference at every pixel of the overlap-
ping region.

2) Copy the difference to the cost at the first row.
3) Compute the cost of arriving at all pixels row by row

from top to bottom. The cost at (i, j+1) pixel Ei,j+1

is Ei,j+1 = Ei,j+1 +min {Ei−1,j , Ei,j , Ei+1,j}.
4) Trace back for the optimal seam.

III. RESULT AND DISCUSSION

A. Basic synthesis algorithm

In this assignment, the parameters is set as follow:
ErrThreshold = 0.1, MaxErrThreshold = 0.3,
Sigma = WindowSize/6.4 as in the original paper. The
window size needs to be comparable with the size of the
basic components of the texture in order to be synthesized
correctly. However, the bigger the window size, the larger
the MRF, and the more iterations are needed to synthesize
one pixel. In some cases, the appropriate window size is
so big that the synthesis process becomes unacceptably
slow. However, If the window size is too small to capture
the structure of the texture, the synthesize algorithm will
generate bad results.



Fig. 1: Basic synthesis results

B. Patch based synthesis

Again, the relative sizes between the block size and the
texture’s structure is very important. A big block and small
overlap region will make the synthesis faster, but in some
cases, the quality of the synthesized texture decreases. Unlike
the basic synthesis algorithm, if the block size is set too
big, the assumption on the correlation between the pixels
of the same block is not valid; therefore, setting the block
size to big will have the adverse effect on the quality of the
synthesized texture. A bigger overlap region makes it easier
to find an optimal minimum cut and consequently creates
seamless texture, but the big overlap region also decreases the
synthesize speed since fewer new pixels will be synthesized
in each patch. Comparing the results of the two algorithm,
we see that patch based synthesis using image quilting is
superior to the basic synthesis in terms of speed and quality.

C. Suggestions

Currently, the synthesize speed is slow mostly because
the MALTAB code is not fully vectorized. Besides, the
approximate nearest neighbor search can be used to reduce
the patch searching time. For better synthesis, the algorithm
needs to be able to determine the optimal size of the window
or the patch.

Fig. 2: Patch based synthesis results

Fig. 3: Sample textures

REFERENCES

[1] A. A. Efros and T. K. Leung, “Texture synthesis by non-parametric
sampling,” in IEEE International Conference on Computer Vision,
Corfu, Greece, September 1999, pp. 1033–1038.

[2] A. A. Efros and W. T. Freeman, “Image quilting for texture synthesis
and transfer,” Proceedings of SIGGRAPH 2001, pp. 341–346, August
2001.


